7.11 Orthogonal Algorithms
函数
(matrix-gram-schmidt M [normalize? start-col]) → (Array Number)
M : (Matrix Number) normalize? : Any = #f start-col : Integer = 0
> (define M (matrix [[12 -51 4] [ 6 167 -68] [-4 24 -41]])) > (matrix-gram-schmidt M) - : (Array Real)
(array #[#[12 -69 -58/5] #[6 158 6/5] #[-4 30 -33]])
> (matrix-gram-schmidt M #t) - : (Array Real)
(array #[#[6/7 -69/175 -58/175] #[3/7 158/175 6/175] #[-2/7 6/35 -33/35]])
> (matrix-cols-orthogonal? (matrix-gram-schmidt M)) - : Boolean
#t
> (matrix-orthonormal? (matrix-gram-schmidt M #t)) - : Boolean
#t
> (matrix-gram-schmidt (matrix [[ 1 -2 1] [-2 4 9] [ 3 -6 7]])) - : (Array Real)
(array #[#[1 5/7] #[-2 67/7] #[3 43/7]])
> (matrix-gram-schmidt (make-matrix 3 3 0)) - : (Array Real)
(array #[#[] #[] #[]])
When start-col is positive, the Gram-Schmidt process is begun on column start-col (but still using the previous columns to orthogonalize the remaining columns). This feature is generally not directly useful, but is used in the implementation of matrix-basis-extension.
> (define M (matrix [[0.7 0.70711] [0.70001 0.70711]]))
> (matrix-orthonormal? (matrix-gram-schmidt M #t)) - : Boolean
#f
> (matrix-orthonormal? (matrix-gram-schmidt (matrix-gram-schmidt M) #t)) - : Boolean
#t
函数
(matrix-basis-extension M) → (Array Number)
M : (Matrix Number)
函数
M : (Matrix Number) (matrix-qr M full?) → (Values (Matrix Number) (Matrix Number)) M : (Matrix Number) full? : Any
An orthonormal matrix has columns which are orthoginal, unit vectors. The (full) decomposition of a square matrix consists of two matrices: a orthogonal matrix Q and an upper triangular matrix R, such that QR = M.
For tall non-square matrices R, the triangular part of the full decomposition, contains zeros below the diagonal. The reduced decomposition leaves the zeros out. See the Wikipedia entry on QR decomposition for more details.
> (define M (matrix [[12 -51 4] [ 6 167 -68] [-4 24 -41]])) > (define-values (Q R) (matrix-qr M)) > (values Q R) - : (values (Array Real) (Array Real))
(array #[#[6/7 -69/175 -58/175] #[3/7 158/175 6/175] #[-2/7 6/35 -33/35]])
(array #[#[14 21 -14] #[0 175 -70] #[0 0 35]])
> (matrix= M (matrix* Q R)) - : Boolean
#t
> (define M (matrix [[12 -51] [ 6 167] [-4 24]])) > (define-values (Q1 R1) (matrix-qr M #f)) > (define-values (Q2 R2) (matrix-qr M #t)) > (values Q1 R1) - : (values (Array Real) (Array Real))
(array #[#[6/7 -69/175] #[3/7 158/175] #[-2/7 6/35]])
(array #[#[14 21] #[0 175]])
> (values Q2 R2) - : (values (Array Real) (Array Real))
(array #[#[6/7 -69/175 58/175] #[3/7 158/175 -6/175] #[-2/7 6/35 33/35]])
(array #[#[14 21] #[0 175] #[0 0]])
> (matrix= M (matrix* Q1 R1)) - : Boolean
#t
> (matrix= M (matrix* Q2 R2)) - : Boolean
#t
The decomposition M = QR is useful for solving the equation Mx=v. Since the inverse of Q is simply the transpose of Q, Mx=v <=> QRx=v <=> Rx = Q^T v. And since R is upper triangular, the system can be solved by back substitution.
The algorithm used is Gram-Schmidt with reorthogonalization.